Lesson 3. Cobwebs

0 Warm up

Example 1. Consider the DS $A_{n+1}=\frac{1}{2} A_{n}+1, n=0,1,2, \ldots$.
a. Let $A_{0}=4$. Compute A_{1}, \ldots, A_{4}.
b. Let $A_{0}=0$. Compute A_{1}, \ldots, A_{4}.
c. What are the fixed points of this DS?

1 How to draw a cobweb

- Sometimes we want to study how a DS behaves with different ICs
- Cobwebs are a graphical method for understanding this behavior
- Consider the DS $A_{n+1}=f\left(A_{n}\right), n=0,1,2, \ldots$
- How to draw a cobweb:

1. Draw the line $y=x$.
2. Draw the graph of $y=f(x)$.
3. Pick an initial point A_{0} on the x-axis.
4. Connect $\left(A_{0}, 0\right)$ to $\left(A_{0}, A_{1}\right)$ with a vertical line.

Note that $A_{1}=f\left(A_{0}\right)$, so $\left(A_{0}, A_{1}\right)$ is on the graph of $y=f(x)$.
5. Connect $\left(A_{0}, A_{1}\right)$ to $\left(A_{1}, A_{1}\right)$ with a horizontal line.

Note that $\left(A_{1}, A_{1}\right)$ is on the graph of $y=x$.
6. Connect $\left(A_{1}, A_{1}\right)$ to $\left(A_{1}, A_{2}\right)$ with a vertical line.

Note that $A_{2}=f\left(A_{1}\right)$, so $\left(A_{1}, A_{2}\right)$ is on the graph of $y=f(x)$.
7. Continue in this way.

Example 2. Consider the same DS from Example 1: $A_{n+1}=\frac{1}{2} A_{n}+1, n=0,1,2, \ldots$.
Draw the cobwebs with $A_{0}=4$ and $A_{0}=0$.

- In the above example, it looks like if A_{0} is close to the fixed point $c=2$, then we eventually end up at the fixed point
- The fixed point $c=2$ is "attracting" the sequence of points
- We'll come back to this later

Example 3. Consider the same DS from Example 1: $A_{n+1}=2 A_{n}-1, n=0,1,2, \ldots$. Draw the cobwebs with $A_{0}=2$ and $A_{0}=0$.

- This time, in the above example, it looks the fixed point $c=1$ is "repelling" sequence the points

2 Attracting and repelling fixed points

- A fixed point c is attracting if whenever A_{0} is sufficiently close to c, then $A_{n} \rightarrow c$ as $n \rightarrow \infty$
- A fixed point c is repelling if no matter how close A_{0} is to c, then A_{n} is eventually far away from c infinitely many times
- A DS may have a fixed point that is neither attracting nor repelling

Example 4. Consider the DS $A_{n+1}=3 A_{n}-2$. Find the fixed points. Use cobwebs to determine whether each fixed point is attracting, repelling, or neither.

Example 5. Consider the DS $A_{n+1}=-A_{n}+1$. Find the fixed points. Use cobwebs to determine whether each fixed point is attracting, repelling, or neither.

